Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 446: 130699, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603430

RESUMO

Perfluorinated-alkyl substances (PFAS) pose an unmet threat to the public because they are not strictly monitored and regulated. Perfluorinated-carbon alkyl chains (PFOA), a type of PFAS, at 70 fg/µL is the current health and safety recommendation. Current testing methods for PFOA and PFAS chemicals include HPLC-MS/MS and molecularly imprinted polymers, which are expensive, time-consuming, and require training. In this work, PFOA and PFOS detection was performed on a paper microfluidic chip using competitive interactions between PFOA/PFOS, cellulose fibers, and various reagents (L-lysine, casein, and albumin). Such interactions altered the surface tension at the wetting front and, subsequently, the capillary flow rate. A smartphone captured the videos of this capillary action. The samples flowed through the channel in less than 2 min. Albumin worked the best in detecting PFOA, followed by casein. The detection limit was 10 ag/µL in DI water and 1 fg/µL in effluent (processed) wastewater. Specificity to other non-fluorocarbon surfactants was also tested, using anionic sodium dodecyl sulfate (SDS), non-ionic Tween 20, and cationic cetrimonium bromide (CTAB). A combination of the reagents successfully distinguished PFOA from all three surfactants at 100% accuracy. This low-cost, handheld assay can be an accessible alternative for rapid in situ estimation of PFOA concentration.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Ação Capilar , Smartphone , Caseínas , Tensoativos/análise , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/análise , Caprilatos/análise
2.
PNAS Nexus ; 1(1): pgac028, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35450423

RESUMO

Saliva specimens have drawn interest for diagnosing respiratory viral infections due to their ease of collection and decreased risk to healthcare providers. However, rapid and sensitive immunoassays have not yet been satisfactorily demonstrated for such specimens due to their viscosity and low viral loads. Using paper microfluidic chips and a smartphone-based fluorescence microscope, we developed a highly sensitive, low-cost immunofluorescence particulometric SARS-CoV-2 assay from clinical saline gargle samples. We demonstrated the limit of detection of 10 ag/µL. With easy-to-collect saline gargle samples, our clinical sensitivity, specificity, and accuracy were 100%, 86%, and 93%, respectively, for n = 27 human subjects with n = 13 RT-qPCR positives.

3.
Biosens Bioelectron ; 207: 114192, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35334331

RESUMO

Respiratory viruses, especially coronaviruses, have resulted in worldwide pandemics in the past couple of decades. Saliva-based paper microfluidic assays represent an opportunity for noninvasive and rapid screening, yet both the sample matrix and test method come with unique challenges. In this work, we demonstrated the rapid and sensitive detection of SARS-CoV-2 from saliva samples, which could be simpler and more comfortable for patients than existing methods. Furthermore, we systematically investigated the components of saliva samples that affected assay performance. Using only a smartphone, an antibody-conjugated particle suspension, and a paper microfluidic chip, we made the assay user-friendly with minimal processing. Unlike the previously established flow rate assays that depended solely on the flow rate or distance, this unique assay analyzes the flow profile to determine infection status. Particle-target immunoagglutination changed the surface tension and subsequently the capillary flow velocity profile. A smartphone camera automatically measured the flow profile using a Python script, which was not affected by ambient light variations. The limit of detection (LOD) was 1 fg/µL SARS-CoV-2 from 1% saliva samples and 10 fg/µL from simulated saline gargle samples (15% saliva and 0.9% saline). This method was highly specific as demonstrated using influenza A/H1N1. The sample-to-answer assay time was <15 min, including <1-min capillary flow time. The overall accuracy was 89% with relatively clean clinical saline gargle samples. Despite some limitations with turbid clinical samples, this method presents a potential solution for rapid mass testing techniques during any infectious disease outbreak as soon as the antibodies become available.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus da Influenza A Subtipo H1N1 , COVID-19/diagnóstico , Humanos , Microfluídica , SARS-CoV-2 , Smartphone
4.
Biosens Bioelectron ; 200: 113912, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973565

RESUMO

SARS, a new type of respiratory disease caused by SARS-CoV, was identified in 2003 with significant levels of morbidity and mortality. The recent pandemic of COVID-19, caused by SARS-CoV-2, has generated even greater extents of morbidity and mortality across the entire world. Both SARS-CoV and SARS-CoV-2 spreads through the air in the form of droplets and potentially smaller droplets (aerosols) via exhaling, coughing, and sneezing. Direct detection from such airborne droplets would be ideal for protecting general public from potential exposure before they infect individuals. However, the number of viruses in such droplets and aerosols is too low to be detected directly. A separate air sampler and enough collection time (several hours) are necessary to capture a sufficient number of viruses. In this work, we have demonstrated the direct capture of the airborne droplets on the paper microfluidic chip without the need for any other equipment. 10% human saliva samples were spiked with the known concentration of SARS-CoV-2 and sprayed to generate liquid droplets and aerosols into the air. Antibody-conjugated submicron particle suspension is then added to the paper channel, and a smartphone-based fluorescence microscope isolated and counted the immunoagglutinated particles on the paper chip. The total capture-to-assay time was <30 min, compared to several hours with the other methods. In this manner, SARS-CoV-2 could be detected directly from the air in a handheld and low-cost manner, contributing to slowing the spread of SARS-CoV-2. We can presumably adapt this technology to a wide range of other respiratory viruses.


Assuntos
Técnicas Biossensoriais , COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Aerossóis , Humanos , Microfluídica , SARS-CoV-2 , Smartphone
5.
SLAS Technol ; 27(1): 4-17, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058206

RESUMO

Airborne SARS-CoV-2 transmission represents a significant route for possible human infection that is not yet fully understood. Viruses in droplets and aerosols are difficult to detect because they are typically present in low amounts. In addition, the current techniques used, such as RT-PCR and virus culturing, require large amounts of time to get results. Biosensor technology can provide rapid, handheld, and point-of-care systems that can identify virus presence quickly and accurately. This paper reviews the background of airborne virus transmission and the characteristics of SARS-CoV-2, its relative risk for transmission even at distances greater than the currently suggested 6 feet (or 2 m) physical distancing. Publications on biosensor technology that may be applied to the detection of airborne SARS-CoV-2 and other respiratory viruses are also summarized. Based on the current research we believe that there is a pressing need for continued research into handheld and rapid methods for sensitive collection and detection of airborne viruses. We propose a paper-based microfluidic chip and immunofluorescence assay as one method that could be investigated as a low-cost and portable option.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vírus , Aerossóis , Humanos , SARS-CoV-2
6.
Nat Protoc ; 16(3): 1452-1475, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514945

RESUMO

Norovirus is a widespread public health threat and has a very low infectious dose. This protocol presents the extremely sensitive mobile detection of norovirus from water samples using a custom-built smartphone-based fluorescence microscope and a paper microfluidic chip. Antibody-conjugated fluorescent particles are immunoagglutinated and spread over the paper microfluidic chip by capillary action for individual counting using a smartphone-based fluorescence microscope. Smartphone images are analyzed using intensity- and size-based thresholding for the elimination of background noise and autofluorescence as well as for the isolation of immunoagglutinated particles. The resulting pixel counts of particles are correlated with the norovirus concentration of the tested sample. This protocol provides detailed guidelines for the construction and optimization of the smartphone- and paper-based assay. In addition, a 3D-printed enclosure is presented to incorporate all components in a dark environment. On-chip concentration and the assay of higher concentrations are presented to further broaden the assay range. This method is the first to be presented as a highly sensitive mobile platform for norovirus detection using low-cost materials. With all materials and reagents prepared, a single standard assay takes under 20 min. Although the method described is used for detection of norovirus, the same protocol could be adapted for detection of other pathogens by using different antibodies.


Assuntos
Microfluídica/instrumentação , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Fluorescência , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Norovirus/isolamento & purificação , Norovirus/patogenicidade , Smartphone , Água/análise , Microbiologia da Água
7.
ACS Omega ; 4(6): 11180-11188, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460218

RESUMO

Human enteric viruses can be highly infectious and thus capable of causing disease upon ingestion of low doses ranging from 100 to 102 virions. Norovirus is a good example with a minimum infectious dose as low as a few tens of virions, that is, below femtogram scale. Norovirus detection from commonly implicated environmental matrices (water and food) involves complicated concentration of viruses and/or amplification of the norovirus genome, thus rendering detection approaches not feasible for field applications. In this work, norovirus detection was performed on a microfluidic paper analytic device without using any sample concentration or nucleic acid amplification steps by directly imaging and counting on-paper aggregation of antibody-conjugated, fluorescent submicron particles. An in-house developed smartphone-based fluorescence microscope and an image-processing algorithm isolated the particles aggregated by antibody-antigen binding, leading to an extremely low limit of norovirus detection, as low as 1 genome copy/µL in deionized water and 10 genome copies/µL in reclaimed wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...